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Avoiding quantum chaos in quantum computation
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We study a one-dimensional chain of nuclear 1/2 spins in an external time-dependent magnetic field,
considered as a possible candidate for experimental realization of quantum computation. According to the
general theory of interacting particles, one of the most dangerous effects is quantum chaos that can destroy the
stability of quantum operations. The standard viewpoint is that the threshold for the onset of quantum chaos
due to an interaction between spins~qubits! strongly decreases with an increase of the number of qubits.
Contrary to this opinion, we show that the presence of a nonhomogeneous magnetic field can strongly reduce
quantum chaos effects. We give analytical estimates that explain this effect, together with numerical data
supporting our analysis.
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Much attention has been paid in recent years to the ide
quantum computation~see, for example,@1–3# and refer-
ences therein!. The burst of interest in this subject is caus
by the discovery of a fast quantum algorithm for the fact
ization of integers@4# demonstrating the effectiveness
quantum computers in comparison to the classical on
Nowadays, there are different projects for the experime
realization of quantum computers, based on interacting t
level systems~qubits!. One of the most important problem
widely discussed in the literature, is the problem of decoh
ence that arises in many-qubit systems due to the influe
of an environment@5#. However, even in the absence of th
environment, the interaction between qubits may lead to
onset of quantum chaos@6#.

The latter subject of quantum chaos in closed system
interacting particles has been developed recently in app
tion to nuclear, atomic, and solid state physics~see, e.g.,@7#
and references therein!. When the~two-body! interaction be-
tween particles exceeds a critical value, fast transition
chaos occurs in the Hilbert space of many-particle states@8#.
Different aspects of this transition are now well understo
such as a statistical description of eigenstates and the o
of thermalization in finite systems~see, e.g.,@9# and refer-
ences therein!.

Direct application of quantum chaos theory to a sim
model of quantum computer@6# has shown that for a stron
enough interaction between qubits, the onset of quan
chaos is unavoidable. Although forL514– 16 qubits the
critical valueJcr for quantum chaos threshold is quite larg
with an increase ofL it decreases asJcr;1/L. From the
viewpoint of the standard approach to closed systems o
teracting particles, the decrease of chaos threshold with
increase of qubits looks generic. However, in this paper
demonstrate that this conclusion is not universal and
quantum chaos can be avoided, for example, with a pro
choice of the external magnetic field.

Our consideration is based on the model of on
dimensional chain ofL identical nuclear 1/2 spins, for ex
1063-651X/2001/65~1!/015204~4!/$20.00 65 0152
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ample, proton spins in a high magnetic field@10#. The con-
stant magnetic field, which points in the positivez direction
is slightly nonuniform:Bz5Bz(z). The angleu between the
direction of the chain andz axis satisfies to the condition
cosu51/). In this case the dipole-dipole interaction is su
pressed, and the main interaction between nuclear spin
the Ising interaction mediated by chemical bonds. The gy
magnetic ratio for a protong/2p is approximately 43 MHz/T.
If the distance between neighboring spins is 0.2 nm and
frequency difference between them is 1 kHz, then the co
sponding gradient of the constant magnetic fielddBz/dz is
approximately 23105 T/m. Such a gradient is experimen
tally achievable; see, e.g.,@11#. In our model the spin chain is
also subjected to the transversal circular polarized magn
field. The expression for the total magnetic field has the f
lowing form @12#:

BW ~ t !5@b'
p cos~npt1wp!,2b'

p sin~npt1wp!,Bz#.

HereBz is a constant magnetic field oriented in the positi
z direction,b'

p , np , andwp are the amplitudes, frequencie
and phases of a circular polarized magnetic field. The la
is given by the sum ofp51i ...,P rectangular pulses of the
length tp112tp , rotating in the~x,y! plane and providing a
quantum computer protocol. The quantum Hamiltonian
this system has the form

H52 (
k50

L21 S vkI k
z12(

n.k
Jk,nI k

zI n
zD

2
1

2 (
p51

P

Qp~ t !Vp (
k50

L21

~e2 inpt2 iwpI k
21einpt1 iwpI k

1!,

~1!

where the ‘‘pulse function’’Qp(t) equals 1 only during the
pth pulse, fortp,t<tp11 . The quantitiesJk,n stand for the
Ising interaction between two qubits,vk are the frequencies
of spin precession in theBz magnetic field,Vp is the Rabi
©2001 The American Physical Society04-1
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frequency of thepth pulse,I k
x,y,z5( 1

2 )sk
x,y,z , the latter being

the Pauli matrices, andI k
65I k

x6 i I k
y .

For thepth pulse, the Hamiltonian~1! can be represente
in the coordinate system that rotates with the frequencynp .
Thus, for thepth pulse, andtp,t<tp11 our model can be
reduced to thestationaryHamiltonian,

H~p!52 (
k50

L21 FjkI k
z1~aI k

x2bI k
y!12(

n.k
Jk,nI k

zI n
zG , ~2!

wherejk5(vk2np), a5Vp coswp , andb5Vp sinwp .
A typical quantum protocol can require a regime of bo

selective, Vp!Jk,n!dvk!vk , andnonselective, Vp@dvk
@J, excitations, wheredvk5uvk112vku @10#. In this paper
we mainly concentrate on the latter, however, the theory
veloped here can be extended to the former one. Nonse
tive excitation provides the simplest way to prepare a hom
geneous superposition of 2L states needed fo
implementation of both Shor and Grover algorithms. In wh
follows, for simplicity, we consider the case whenwp5p/2
and Vp5V, np5n. Our main interest is in the neare
neighbor interaction~N interaction! between qubits for two
different cases, thedynamical one when all coupling ele
ments are the same,Jk,n5Jdn,k11 , and the case when a
valuesJk,k11 are random~random model!. We also briefly
discuss another case when all qubits interact to each othe~A
interaction! with randomJk,n .

For the dynamicalN interaction andn5v0 , vk5v0
1ak (a.0), the Hamiltonian takes the form

H5 (
k50

L21

@2dkI k
z1VI k

y#22I (
k50

L22

I k
zI k11

z . ~3!

wheredk5ak. In the z representation the Hamiltonian ma
trix of sizeN52L is diagonal forV50. ForVÞ0, we have,
Hkn5Hnk* 5 iV/2 with n.k. The matrix is very sparse, an
it has specific structure in the basis, reordered accordin
an increase of the numbers, written in the binary represen
tation, s5 i L21 ,i L22 ,...,i 0 ~with i s50 or 1, depending on
whether a single-particle state ofi th qubits is the ground
state or the excited one!.

For V@J the spectrum consists ofL11 narrow bands
with large gaps of size approximatelyV between the bands
Since the most interesting energy region for the prepara
of the homogeneous wave function is in the middle of
energy spectrum, we consider below only the central b
and the corresponding eigenstates forL even.

In the absence of interaction,J50, all eigenstates in thez
representation are fully extended with the value of com
nentsucnu close to 1/AN. Typical structure of eigenstates i
the central band is shown in Fig. 1 for different values ofJ.
One can see that with an increase ofJ interaction, the prob-
abilities wn5ucnu2 deviate from the unperturbed valuewn
51/N, thus resulting in quantum computation errors. T
data demonstrate the transition fromregular states for a
weak interaction,J<0.1, to strongly chaoticones for J
'100.
01520
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Global properties of eigenstates can be characterized
the numberNpc of principal components, determined throug
the inverse participation ratio, Npc(E)5@Snucn(E)u4#21,
wherecn(E) is thenth component of a specific eigenfunc
tion. For zero interactionNpc is equal toN, and it decreases
with an increase of interaction, thus giving the measure
the destruction of unperturbed (J50) eigenstates. Note tha
for completely chaotic eigenstates with Gaussian fluctuati
for cn , one hasNpc5N/3 @7#.

Numerical data for the dependence ofNpc on the interac-
tion J reveal different regions, see Fig. 2. The first regi
~very weak interaction! corresponds to completely extende
eigenstates withucnu'1/AN. Here the energy spectrum i
characterized by many close quasidegenerate levels. In

FIG. 1. Typical structure of eigenfunctions forJ50, 231024,
0.1, 1, 10, and 100 denoted by~a, b, c, d, e, f ! respectively. Eigen-
states are taken from the central energy band forL512, V5100,
anda51.

FIG. 2. The average number of principal componentsNpc as a
function of J for the parameters of Fig. 1; the horizontal line co
responds toN/3. The average is taken over the eigenfunctions fr
the central band only.
4-2
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second region withNpc!N all eigenstates are strongly influ
enced by the interqubit interaction. We call it the region
weak chaossince a kind of irregularity emerges in the stru
ture of eigenstates. However, this region has nothing to
with quantum chaos. Indeed, here the level spacing distrib
tion P(s) is quite close to the Poisson, known to be a fi
gerprint of the integrability of a system. From the practic
point of view theweak chaosthat occurs forJ>Jcr'0.05,
should be avoided in quantum computation because of la
deviations of eigenstates from the unperturbed ones,
Figs. 1~c! and 1~d!.

A second transition tostrong quantum chaosoccurs for
J>Jband@Jcr with Jband'20. By this term we denote th
situation when the level spacing distribution has the Wign
Dyson form and fluctuations of componentscn are close to
the Gaussian ones withNpc'N/3. Analysis shows that this
transition corresponds to the overlapping of the central
ergy band with the nearest ones. Quite unexpectedly, the
domization of the interaction strength in the interv
@2J,J# does not change the results: the transition to str
quantum chaos occurs only due to the overlapping of
energy bands for a very large interaction. This means tha
both the dynamical and randomN interaction, our system is
close to an integrable one forJ<Jband.

The abovenumericalanalysis forL512 shows that the
weak chaoscan significantly influence the structure of eige
states, but the regime ofstrong chaosis not achievable in
quantum computation. However, according to a common
lief, the thresholds forboth weak and strong chaos are e
pected to decrease with an increase ofL, thus, leading to a
destruction of unperturbed states even in the presence
relatively weak interactionJ @13#.

We show nowanalytically, that contrary to the standar
viewpoint, in this model the weak chaos border.I cr is inde-
pendentof the number of qubits. In order to explain th
unexpected phenomena, it is convenient to represent
Hamiltonian~3! in the basis in which it is diagonal for non
interacting (J50) qubits,

H5H01JV0 . ~4!

Here the ‘‘effective field’’ HamiltonianH0 is determined by
the sum ofL individual HamiltoniansHk ,

H05 (
k50

L21

Hk5 (
k50

L21

Adk
21V2I k

z , ~5!

and the interaction between new ‘‘quasiparticles’’ is given
V05Vdrag1Vband1Voff . Here Vdrag522Skbkbk11I k

zI k11
z

stands for the diagonal interaction, Vband

522Skakak11I k
yI k11

y describes the coupling within th
band and with its neighbor bands, andVoff

52Sk (akbk11I k
yI k11

z 1ak11bkI k
zI k11

y ) refers to the coupling
between next-to-neighbor different bands. The amplitudesak
and bk are given by the relations,ak5V/A, bk5(n
2vk)/A, andA5Adk

21V2.
01520
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Under the conditiondk5ak!V we have the following
expression for single-particle ‘‘quasienergies’’ek corre-
sponding to the HamiltonianH0 ,

ek56
1

2
Adk

21V2.6
1

2 S V1
a2k2

2V D . ~6!

Note, that each ‘‘quasiparticle’’ can have 2L different
‘‘quasienergies’’ek while qubits have two. The above expre
sion allows us to construct many-particle unperturb
quasienergies,Ec5Sk50

L21ek , inside the central band. Indeed
for ak!V all many-particle levels have~for L even! L/2
positive andL/2 negative values ofek . As a result, the total
numberNcb of many-body states in the central band is giv
by Ncb5L! @(L/2)!(L/2)!#21, and the size can be estimate
twice the maximum energy, (DE)cb52Ec

max5a2L2(L
21)/8V.

Now, we can estimate the mean level spacingdE between
those many-body states that are directly coupled byVband.
The value dE can be estimated as the ratiodE
5(DE) f /M f where M f'L/2 is the number of many-body
states coupled byVband. One should stress that the ener
range (DE) f within which these states are coupled, is mu
less than the total energy width (DE)cb of the central band,
due to the two-body nature of interaction. This value (DE) f
can be estimated as the maximal difference between the
ergies Ec

(2)5Sk
(2)ek and Ec

(1)5Sk
(1)ek of two many-body

statesu1& and u2& of H0 , that have the couplinĝ1uVbandu2&
different from zero. From the expression~6! one finds,
(DE) f5a2L/V. As a result, for L@1 we have dE
5DEf /M f'2a2/V.

Now, dE should be compared with the typical perturb
tion strengthV5JV0 @9#. The latter can be found fromVband
asV'J/2. Therefore, we finally obtain

Jcr'
4a2

V
. ~7!

Note that in the ‘‘effective field’’ representationJcr deter-
mines the delocalization border. Namely, for J<Jcr the
eigenstates ared-like functions withNpc'1, and above this
border, forJ>Jcr , the value ofNpc increases fast with an
increase of the interaction.

Remarkably, the thresholdJcr to weak chaoscontrary to
@6#, does not depend on the numberL of qubits. The origin of
this phenomenon is that the width (DE) f and M f both in-
crease linearly inL. This effect is entirely related to the con
stant gradient of the magnetic field in the original Ham
tonian thus leading to a quadratic growth of the energy in
~6! in dependence onk. One can show that for a homoge
neous magnetic field we get the sameL dependence as in@6#.

Numerical data for the numberNpc of principal compo-
nents of eigenstates in the new basis@whereH0 is diagonal
for J50, see Eq.~4!# are given in Fig. 3 as a function o
J/Jcr . One can see that below the border,J,Jcr , there is a
scaling dependence ofNpc on L and V that confirms our
estimate~7!. On the other side, forJ.Jcr , the value ofNpc
saturates to its maximal valueNcb/3 in correspondence with
4-3
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random matrix predictions@7#. We have to stress that th
transition to extended states in the ‘‘effective field’’ represe
tation, which occurs forJ.Jcr , corresponds to the transitio
to weak chaosfor the eigenstates in thez representation, se
Fig. 2.

Data for randomN interaction turn out to be similar to
that shown in Fig. 3. This indicates that the model is, inde
close to the integrable one, independent of whether the in
action is dynamical or random. This phenomenon can
explained analytically. Indeed, on neglecting the interba
interactionVoff , the Hamiltonian~4! is rigorously integrable,
see@14# and references therein. Therefore, the onset of qu
tum chaos forN interaction is only possible when energ
bands are overlapped.

FIG. 3. The average number of principal components for
dynamicalN interaction as a function ofJ/Jcr , in the central band
in the H0 basis, for differentV andL.
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Now we have to take into account that with an increase
L, the width (DE)cb of the central band can exceed the d
tance V between the nearest ones, which leads to str
quantum chaos. The estimate for the critical value,Lcr ,
which corresponds to the band overlapping in absence of
J interaction reads asLmax;(V/a)2/3@1.

It can be shown that for the interaction betweenall qubits
~A interaction! there is no relevance to the integrability, an
the delocalization border~7! corresponds to the onset o
strong quantum chaosmanifested by the Wigner-Dyson dis
tribution for P(s). In this case the estimate for the ener
width (DE) f is (DE) f5L2a2/2V, andM f5L2/4. Therefore,
we getdE5(DE) f /M f'2a2/V which is the same as for th
N interaction. This is an unexpected result since generica
the chaos border forA interaction is much lower than forN
interaction~Jcr}1/L2, see, e.g.,@13#!. Our numerical data for
the A interaction in Eq.~3! confirm the above prediction.

In conclusion, we have shown that, in contrast to gene
belief, the chaos border in the model ofL interacting qubits
does not decrease with an increase ofL, in the presence of a
magnetic field with constant gradient in thex direction. The
quantum chaos that emerges for a very strong interac
between qubits is irrelevant to quantum computation as fa
a short range interqubits coupling is concerned. The mec
nism of strong chaos for theN interaction is due to band
overlap only, and can be avoided even for a very large nu
ber of qubits. It is interesting to note that a similar analy
for an inhomogeneous gradient of magnetic field (vk}k4),
give rise to a chaos border proportional toL. The region of
parameters for quantum computation withselective excita-
tion requires additional analysis.
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